DBR: A Simple, Fast and Efficient Dynamic Network Reconfiguration Mechanism Based on Deadlock Recovery Scheme
نویسندگان
چکیده
Dynamic network reconfiguration is described as the process of replacing one routing function with another while the network keeps running. The main challenge is avoiding deadlock anomalies while keeping limitations on message injection and forwarding minimal. Current approaches, whose complexity is so high that their practical applicability is limited, either require the existence of extra network resources like virtual channels, or they affect the performance of the network during the reconfiguration process. In this paper we present a simple, fast and efficient mechanism for dynamic network reconfiguration which is based on regressive deadlock recoveries instead of avoiding deadlocks. The mechanism which is referred to as DBR guarantees a deadlock-free reconfiguration based on wormhole switching (WS) and it does not require additional resources. In this approach, the need for a reliable message transmission has led to a modified WS mechanism which includes additional flits or control signals. DBR allows cycles to be formed and in such conditions when a deadlock occurs, the messages suffer from time-out. Then, this method releases the buffers and channels from the current node and thus the source retransmits the message after a random time gap. Evaluating results reveal that the mechanism shows substantial performance improvements over the other methods and it works efficiently in different topologies with various routing algorithms.
منابع مشابه
PDR: A protocol for dynamic network reconfiguration based on deadlock recovery scheme
Dynamic network reconfiguration is described as the process of replacing one routing function with another while the network keeps running. The main challenge is avoiding deadlock anomalies while keeping limitations on packet injection and forwarding minimal. Current approaches which have a high complexity and as a result have a limited practical applicability either require the existence of ex...
متن کاملDeadlock-free dynamic reconfiguration over InfiniBandTM NETWORKS
InfiniBand Architecture (IBA) is a newly established general-purpose interconnect standard applicable to local area, system area and storage area networking and I/O. Networks based on this standard should be capable of tolerating topological changes due to resource failures, link/switch activations, and/or hot swapping of components. In order to maintain connectivity, the network’s routing func...
متن کاملSimple Deadlock-Free Dynamic Network Reconfiguration
Dynamic reconfiguration of interconnection networks is defined as the process of changing from one routing function to another while the network remains up and running. The main challenge is in avoiding deadlock anomalies while keeping restrictions on packet injection and forwarding minimal. Current approaches fall in one of two categories. Either they require the existence of extra network res...
متن کاملPart I: A Theory for Deadlock-Free Dynamic Network Reconfiguration
This paper develops theoretical support useful for determining deadlock properties of dynamic network reconfiguration techniques and also serves as a basis for the development of design methodologies useful for deriving deadlock-free reconfiguration techniques. It is applicable to interconnection networks typically used in multiprocessor servers, network-based computing clusters and distributed...
متن کاملDeadlock Detection and Recovery for True Fully Adaptive Routing in Regular Wormhole Networks
Deadlock detection and recovery-based routing schemes for wormhole networks have gained attraction because unlike deadlock avoidance-based schemes, they do not restrict routing adaptability. In order to alleviate the overhead of running a recovery procedure, the studies on deadlock detection have focused on the accuracy of deadlock detection, trying to reduce the number of false detections. Thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1211.5747 شماره
صفحات -
تاریخ انتشار 2012